Nicht-Eukl. Geometrie (Weiss), WS 2015-16 Übungsblatt 3

- 1. Ist die folgende Aussage richtig? Eine stetige Abbildung γ : $[\mathfrak{a},\mathfrak{b}] \to \mathbb{R}^n$ ist genau dann stückweise glatt, wenn es eine endliche Teilmenge S von $[\mathfrak{a},\mathfrak{b}]$ gibt derart, dass γ an jedem Punkt von $[\mathfrak{a},\mathfrak{b}] \setminus S$ unendlich oft differenzierbar ist. [4]
- 2. Zeigen, dass Kurvenlänge und gewichtete Kurvenlänge unabhängig von Parameterisierung sind. (Siehe Vorl.notizen Woche 3, Lemma 3.1.4 und Lemma 3.1.7.) [6]
- 3. Sei U eine offene wegzusammenhängende Teilmenge von \mathbb{R}^n und sei $\Phi \colon U \to \mathbb{R}$ die konstante Funktion mit $\Phi(x) = 1$ für alle $x \in U$. Die Metrik d^{Φ} auf U (siehe Vorl.notizen Woche 3, Theorem 3.2.11) muss nicht mit der Euklidischen Metrik auf U übereinstimmen. Geben Sie ein Beispiel von nichtleerem U, so dass die beiden Metriken übereinstimmen, und ein anderes Beispiel von nichtleerem U, so dass die beiden Metriken nicht übereinstimmen.
- **4.** (Schwer.) (Fehler in Def von U korrigiert, 11.11.) Sei $U = \{x \in \mathbb{R}^2 \mid 0 < x_2\}$ und sei $\Phi \colon U \to \mathbb{R}$ definiert durch

$$\Phi(x) = \frac{1}{x_1^2 + x_2^2} .$$

Zeigen Sie, dass es eine Isometrie gibt von U mit der Metrik \mathbf{d}^{Φ} nach U mit der Euklidischen Metrik.¹

Was ist demnach $d^{\Phi}(z, z')$ wenn z = (0, 1) und z' = (1, 3)? Wie kann eine Kurve γ in U aussehen, die z mit z' verbindet und deren gewichtete Länge $L^{\Phi}(\gamma)$ genau dieser Abstand $d^{\Phi}(z, z')$ ist? Zeichnung erwünscht. [4]

Zur Abgabe am Do dem 12.11. vor 16:00: alle Aufgaben.

¹Hinweis. Erstmal Aufgabe 3 bedenken. Dann: sei f: $U \to U$ so eine Isometrie. Wenn sie glatt ist, sollte gelten $\|(f \circ \gamma)'(t)\| = \|\gamma'(t)\|/\|\gamma(t)\|^2$ für beliebige glatte Kurve γ und alle t im Def.bereich von γ . Warum wäre das gut? Und was sagt das über die erste(n) Ableitung(en) von f aus? Kettenregel bedenken.