Exercises for Index theory I

Sheet 8
J. Ebert / W. Gollinger

Deadline: 13.12.2013

Exercise 1. Let $M^{2 m}$ be an oriented closed Riemann manifold, and we let $\mathcal{A}^{*}(M)$ be the space of complex valued forms. There are, as in the lecture, two involutions on $\mathcal{A}^{*}(M)$. Let $\omega \in \mathcal{A}^{p}(M)$. We put $I \omega:=(-1)^{p} \omega$ and $\tau \omega:=i^{p(p-1)+m} * \omega$. Further, $D=d+d^{*}$. Show that $D \tau=-\tau D, I \tau=\tau I$ (and $D I=-I D$ is already known).
a) Consider the graded elliptic operator (D, τ). If m is even, then $\operatorname{ind}(D, \tau)=\operatorname{sign}(M)$ as in the lecture. Prove that for odd $m, \operatorname{ind}(D, \tau)=0$. Hint: let κ be the complex conjugation map on $\mathcal{A}^{*}(M)$ and observe that $D \kappa=\kappa D$ and $\tau \kappa=-\kappa \tau$. This extra symmetry forces the index to be zero!
b) Regardless of whether m is even or odd, the gradings I and τ commute, so we can decompose $\mathcal{A}^{*}=\mathcal{A}^{e v,+} \oplus \mathcal{A}^{e v,-} \oplus \mathcal{A}^{\text {odd,+ }} \oplus \mathcal{A}^{\text {odd,- }}$ into simultaneous eigenspaces of τ and I. The operator D decomposes accordingly. Define two elliptic operators P and Q on M so that $\operatorname{ind}(P)+\operatorname{ind}(Q)=\chi(M)$ and $\operatorname{ind}(P)-\operatorname{ind}(Q)=\operatorname{sign}(M)$ (for m even) and $\operatorname{ind}(P)-\operatorname{ind}(Q)=0$ (for m odd).
c) Show that on $S^{2 n}$, there is a "canonical" elliptic operator of order 1 with index 1 .

Exercise 2. You probably have heard about the fact that if a manifold M admits a vector field without zeroes, then the Euler number of M is 0 (we will prove this later, with other and arguably easier methods). This exercise gives an analytical proof of this result and begins with some linear algebra: Let V be a euclidean vector space. Recall that for each v, we defined operators ι_{v} and $\epsilon_{v}(\eta):=v^{\mathrm{b}} \wedge \eta$ on $\Lambda^{*} V^{*}$. We use them to define operators $\lambda_{v}:=\epsilon_{v}-\iota_{v}$ and $\rho_{v}:=\epsilon_{v}+\iota_{v}$. Prove that
a) $\lambda_{v} \lambda_{w}+\lambda_{w} \lambda_{v}=-2\langle v, w\rangle$.
b) $\rho_{v} \rho_{w}+\rho_{w} \rho_{v}=2\langle v, w\rangle$.
c) ρ_{v} and λ_{w} commute.

Recall that if M is a closed oriented Riemann manifold, then the symbol of $D=d+d^{*}$ is given by $\sigma_{1}(D)(\xi)=i \lambda_{\xi \#}$. If X is any vector field on M, then we have an induced operator $R:=\rho_{X}$. Show that $D R-R D$ is an operator of order 0 . Moreover, prove that R anticommutes with the involution I from the previous exercise.

Now assume that X is a vector field without zeroes. We can therefore write

$$
R^{-1} D R=D+Q
$$

with Q an operator of order zero. Now observe that R switches even and odd forms and conclude that the index of the selfadjoint graded operator $(D ; I)$ is zero (in the lecture, we saw that it is the Euler characteristic).
This proof is due to Atiyah: "Vector fields on manifolds", see his collected works.

