Exercises for Index theory I

J. Ebert / W. Gollinger

Sheet 5

Deadline: 22.11.2013_

Exercise 1. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ be a function with $\varphi \geq 0$, $\int_{\mathbb{R}^n} \varphi(x) dx = 1$. Write $\varphi_t(x) := \frac{1}{t^n} \varphi(\frac{x}{t})$, for t > 0. Determine all $s \in \mathbb{R}$ such that the limit $\lim_{t\to 0} \varphi_t$ exists as an element of the Sobolev space W^s (Hint: you can recycle an estimate from the proof of the Sobolev embedding theorem). If the limit $\delta \in W^s$ exists, describe the functional on W^{-s} determined by δ . Of course, the name δ is not an accident.

Exercise 2. Let φ be as in the previous exercise, with the additional assumption that $\varphi(-x) = \varphi(x)$. For t > 0, we define the *Friedrich mollifier* by $F_t(u) := \varphi_t * u$. Prove that:

- a) If $u \in L^2(\mathbb{R}^n)$, then $F_t u \in \mathcal{S}(\mathbb{R}^n)$.
- b) F_t extends to a bounded operator $W^s \to W^s$, with $||F_t|| \le 1$.
- c) F_t commutes with any differential operator with constant coefficients.
- d) $F_t: W^0 \to W^0$ is self-adjoint.
- e) The space $C_0^{\infty}(\mathbb{R}^n)$ lies dense in $\mathcal{S}(\mathbb{R}^n)$, with respect to each W^s -norm. Hint: it is enough to consider $s \in \mathbb{N}$!
- f) For each $u \in W^s$, we have $F_t u \to u$ in the W^s -norm. Hint: use the density of C_0^{∞} in W^s .

Exercise 3. Let $A \in \operatorname{GL}_n(\mathbb{R})$ and $b \in \mathbb{R}^n$. Let $L_{A,b} : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax + b$ and $f \in \mathcal{S}(\mathbb{R}^n)$. Give a formula for $\widehat{f \circ L_{A,b}}$.