# Exercises for Index theory I 

## Sheet 4

J. Ebert / W. Gollinger

Deadline: 15.11.2013

Exercise 1. Give a formula for the adjoint of a differential operator $P: C^{\infty}\left(U ; \mathbb{C}^{p_{0}}\right) \rightarrow$ $C^{\infty}\left(U ; \mathbb{C}^{p_{1}}\right)$. More precisely, assume that there is some Riemann metric on $U$. The volume form on $U$ can then be written as $a(x) d x_{1} \wedge \ldots \wedge d x_{n}$ for a smooth function $a(x)>0$. The vector bundles $\underline{\mathbb{C}^{p_{i}}}=U \times \mathbb{C}^{p_{i}}$ have the standard hermitian scalar product.

Exercise 2. Assume that $D_{p}: \mathcal{A}^{p}(M) \rightarrow \mathcal{A}^{p+1}(M)$ is a differential operator, which is given for any manifold. Assume that
a) $D(\omega \wedge \eta)=\left(D \omega \wedge \eta+(-1)^{|\omega|} \omega \wedge D \eta\right.$, for all forms.
b) $D_{0}: \mathcal{A}^{0}(M) \rightarrow \mathcal{A}^{1}(M)$ is the usual total differential.
c) If $f: M \rightarrow N$ is any local diffeomorphism (i.e, a map whose differential is everywhere regular), then $D\left(f^{*} \omega\right)=f^{*} D \omega$ (naturality).

Prove that $D=d$. Hint: it is enough to show that $D^{2}=0$, according to the characterization of the exterior derivative. To prove this property, use naturality to show that it is enough to consider $M=\mathbb{R}^{n}$. On $\mathbb{R}^{n}$, there are special diffeomorphisms: $T_{x}(y):=x+y$, $x \in \mathbb{R}^{n}$, and $H_{a}(y):=a y, a \in \mathbb{R} \backslash 0$. Use these diffeomorphisms to prove that $D$ maps each form $d x_{I}$ to zero.

Exercise 3. Let $V$ be finite-dimensional real vector space with an inner product and let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis. Let $e^{i}$ be the image of $e_{i}$ under the musical isomorphism $\sharp: V \rightarrow V^{*}$. On the exterior algebra $\Lambda^{*} V^{*}$, we introduce an inner product $(\omega, \eta)$ by requiring that $\left(e^{i_{1}} \wedge \ldots \wedge e^{i_{p}}\right)_{1 \leq i_{1}<\ldots<i_{p} \leq n}$ is an orthonormal basis of $\Lambda^{p} V^{*}$ and that $\Lambda^{p} V^{*}$ and $\Lambda^{q} V^{*}$ are orthogonal for $p \neq q$.
a) Show that this inner product does not depend on the choice of the orthonormal basis. Hint: a direct computation is cumbersome. Here is an alternative suggestion. First show that it is enough to prove the following: if $V=\mathbb{R}^{n}$ and the standard basis $\left(e_{1}, \ldots, e_{n}\right)$ is used for the inner product, then $\left(A^{*} \omega, A^{*} \eta\right)=(\omega, \eta)$ holds for all forms $\omega, \eta$. Next, prove that for all $B \in \mathfrak{o}(n)$, the space of skew-symmetric matrices, one has $\left(B^{*} \omega, \eta\right)+\left(\omega, B^{*} \eta\right)=0$. This is simpler, because $\mathfrak{o}(n)$ is a vector space and the relation is linear in all variables! Show that this implies $\left(\exp (t B)^{*} \omega, \exp (t B)^{*} \eta\right)=$
$(\omega, \eta)$, for all $t \in \mathbb{R}$ and $B \in \mathfrak{o}(n)$. Recall that the matrices $\exp (B), B \in \mathfrak{o}(n)$ generate $S O(n)$. To get the relation for all all $A \in O(n)$, it is enough to consider a single element $T \in O(n) \backslash S O(n)$.
b) Moreover, prove that for $v \in V$, the adjoint of $\omega \mapsto v^{\sharp} \wedge \omega$ is given by the insertion operator $\iota_{v}$. Hint: it is useful to use bases here, because we used them for the inner product

Let $M$ be a Riemannian manifold. On the exterior algebra bundle, we use the metric induced from the Riemannian metric fibrewise. The adjoint of $d$ is taken with respect to these metrics. Compute the symbols of $d^{*}$ and $\left(d+d^{*}\right)^{2}$.
If $M=\mathbb{R}^{n}$ with the standard metric, we have the operator $\left(d+d^{*}\right)^{2}$ and the Laplace operator $\Delta$, acting on functions with values in the exterior algebra of $\mathbb{R}^{n}$ (which is the same as forms). Show that $\left(d+d^{*}\right)^{2}=\Delta$.

