Exercises for Index theory I

J. Ebert / W. Gollinger

Sheet 4

Deadline: 15.11.2013_

Exercise 1. Give a formula for the adjoint of a differential operator $P : C^{\infty}(U; \mathbb{C}^{p_0}) \to C^{\infty}(U; \mathbb{C}^{p_1})$. More precisely, assume that there is *some* Riemann metric on U. The volume form on U can then be written as $a(x)dx_1 \wedge \ldots \wedge dx_n$ for a smooth function a(x) > 0. The vector bundles $\underline{\mathbb{C}^{p_i}} = U \times \mathbb{C}^{p_i}$ have the standard hermitian scalar product.

Exercise 2. Assume that $D_p : \mathcal{A}^p(M) \to \mathcal{A}^{p+1}(M)$ is a differential operator, which is given for any manifold. Assume that

- a) $D(\omega \wedge \eta) = (D\omega \wedge \eta + (-1)^{|\omega|}\omega \wedge D\eta$, for all forms.
- b) $D_0: \mathcal{A}^0(M) \to \mathcal{A}^1(M)$ is the usual total differential.
- c) If $f: M \to N$ is any local diffeomorphism (i.e, a map whose differential is everywhere regular), then $D(f^*\omega) = f^*D\omega$ (naturality).

Prove that D = d. Hint: it is enough to show that $D^2 = 0$, according to the characterization of the exterior derivative. To prove this property, use naturality to show that it is enough to consider $M = \mathbb{R}^n$. On \mathbb{R}^n , there are special diffeomorphisms: $T_x(y) := x + y$, $x \in \mathbb{R}^n$, and $H_a(y) := ay$, $a \in \mathbb{R} \setminus 0$. Use these diffeomorphisms to prove that D maps each form dx_I to zero.

Exercise 3. Let V be finite-dimensional real vector space with an inner product and let (e_1, \ldots, e_n) be an orthonormal basis. Let e^i be the image of e_i under the musical isomorphism $\sharp : V \to V^*$. On the exterior algebra $\Lambda^* V^*$, we introduce an inner product (ω, η) by requiring that $(e^{i_1} \wedge \ldots \wedge e^{i_p})_{1 \leq i_1 < \ldots < i_p \leq n}$ is an orthonormal basis of $\Lambda^p V^*$ and that $\Lambda^p V^*$ are orthogonal for $p \neq q$.

a) Show that this inner product does not depend on the choice of the orthonormal basis. Hint: a direct computation is cumbersome. Here is an alternative suggestion. First show that it is enough to prove the following: if $V = \mathbb{R}^n$ and the standard basis (e_1, \ldots, e_n) is used for the inner product, then $(A^*\omega, A^*\eta) = (\omega, \eta)$ holds for all forms ω, η . Next, prove that for all $B \in \mathfrak{o}(n)$, the space of skew-symmetric matrices, one has $(B^*\omega, \eta) + (\omega, B^*\eta) = 0$. This is simpler, because $\mathfrak{o}(n)$ is a vector space and the relation is linear in all variables! Show that this implies $(\exp(tB)^*\omega, \exp(tB)^*\eta) =$

 (ω,η) , for all $t \in \mathbb{R}$ and $B \in \mathfrak{o}(n)$. Recall that the matrices $\exp(B)$, $B \in \mathfrak{o}(n)$ generate SO(n). To get the relation for all all $A \in O(n)$, it is enough to consider a single element $T \in O(n) \setminus SO(n)$.

b) Moreover, prove that for $v \in V$, the adjoint of $\omega \mapsto v^{\sharp} \wedge \omega$ is given by the insertion operator ι_v . Hint: it is useful to use bases here, because we used them for the inner product

Let M be a Riemannian manifold. On the exterior algebra bundle, we use the metric induced from the Riemannian metric fibrewise. The adjoint of d is taken with respect to these metrics. Compute the symbols of d^* and $(d + d^*)^2$.

If $M = \mathbb{R}^n$ with the standard metric, we have the operator $(d + d^*)^2$ and the Laplace operator Δ , acting on functions with values in the exterior algebra of \mathbb{R}^n (which is the same as forms). Show that $(d + d^*)^2 = \Delta$.