Exercises for Index theory I

Sheet 11

J. Ebert / W. Gollinger

Deadline: 23.1.2014 ____

The purpose of this exercise sheet is that you familiarize yourself with some basic notions of Lie theory; these facts will be needed for the theory of characteristic classes. It is useful to consider the literature; I recommend the first pages of: Duistermaat, Kolk: "Lie groups", available on googlebooks and Sharpe: "Differential Geometry". First some definitions. A *Lie algebra* is a vector space \mathfrak{g} , together with a bilinear map $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, $(X, Y) \mapsto [X, Y]$, the *bracket*, such that

$$[X, Y] = -[Y, X]$$
 and $[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$

hold for all $X, Y, Z \in \mathfrak{g}$. The second identity is called *Jacobi identity*, and the first one is equivalent to [X, X] = 0, at least in characteristic $\neq 2$. The prime example of a Lie algebra is $\mathfrak{gl}(V)$; this is the space of all endomorphisms of the vector space V, with the commutator as bracket. It is useful to view $\operatorname{GL}(V) \subset \mathfrak{gl}(V)$ as an open subset, thus there is a canonical isomorphism $T_1 \operatorname{GL}(V) \cong \mathfrak{gl}(V)$. The following notations are fixed on the rest of this sheet.

Assumption. Let G be a Lie group with multiplication map $\mu : G \times G \to G$ and unit $1 \in G$. We let $\mathfrak{g} = T_1G$. If H is another Lie group, we let $\mathfrak{h} := T_1H$. Let $\phi : G \to H$ be a smooth group homomorphism and $\varphi : \mathfrak{g} \to \mathfrak{h}$ be the derivative of ϕ at the identity.

For each $g \in G$, we let $C_g : G \to G$, $h \mapsto ghg^{-1}$ be the conjugation map, which is smooth and satisfies $C_g(1) = 1$ and $C_g \circ C_h = C_{gh}$. The *adjoint representation* of Gis the map Ad : $G \to \operatorname{GL}(\mathfrak{g})$; Ad $(g) = D_1C_g$. It is clear that Ad is a smooth group homomorphism $G \to \operatorname{GL}(\mathfrak{g})$. We define ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ as ad $= D_1\operatorname{Ad}$ and for $X, Y \in \mathfrak{g}$: $[X, Y] := \operatorname{ad}(X)(Y)$ or

$$[X,Y] = \mathrm{ad}(X)Y = \frac{d}{dt}|_{t=0}(\mathrm{Ad}(x_t)Y) = \frac{d}{dt}|_{t=0}\frac{d}{dt}|_{s=0}(x_ty_sx_t^{-1}).$$

The group G acts on \mathfrak{g} by the adjoint representation and on \mathfrak{h} by the composition $G \xrightarrow{\phi} H \xrightarrow{\operatorname{Ad}_H} \operatorname{GL}(\mathfrak{h}).$

Exercise 1. Prove that the derivative $\varphi : \mathfrak{g} \to \mathfrak{h}$ is *G*-equivariant, in other words: $\varphi(\operatorname{Ad}(g)X) = \operatorname{Ad}(\phi(g))\varphi(X)$. Hint: take a curve $x_t \in G$ be a curve with $x_0 = 1$ and $\frac{d}{dt}|_{t=0}x_t = X$. Derive from this by differentiating that $\varphi([X,Y]) = [\varphi(X),\varphi(Y)]$, in other words, the derivative of a homomorphism preserves the bracket. **Exercise 2.** Let G = GL(V). Prove that $Ad(g)X = gXg^{-1}$ and ad(X)Y = XY - YX.

This proves easily that $\mathfrak{gl}(V)$, with the bracket defined above, is a Lie algebra. The proof that this is a Lie algebra for general G is not easy at all, and I refer to Duistermaat-Kolk for this fact. However, we are only interested in Lie groups which are *linear* in the sense that there is a vector space V and an injective homomorphism $G \to \operatorname{GL}(V)$. All Lie groups that are relevant for us are linear.

Exercise 3. Prove that \mathfrak{g} , with the commutator, is a Lie algebra, under the simplifying assumption that G is a linear Lie group. Hint: use the linearity to show that [X, X] = 0. Use the first exercise for $\phi : G \to \operatorname{GL}(V)$.

If M is a manifold and \mathfrak{g} a Lie algebra, we can talk about the space $\mathcal{A}^p(M;\mathfrak{g})$ of p-forms with values in \mathfrak{g} . One can combine the wedge product and the Lie bracket:

$$[;]: \mathcal{A}^{p}(M; \mathfrak{g}) \otimes \mathcal{A}^{q}(M; \mathfrak{g}) \stackrel{\wedge}{\to} \mathcal{A}^{p+q}(M; \mathfrak{g} \otimes \mathfrak{g}) \stackrel{[,]}{\to} \mathcal{A}^{p+q}(M, \mathfrak{g});$$

more concretely, if ω , η are real valued forms and $X, Y \in \mathfrak{g}$, then $[\omega \otimes X, \eta \otimes Y] := \omega \wedge \eta \otimes [X, Y]$. Let $\mathfrak{g} = \mathfrak{gl}(V)$ and $X, Y \in \mathfrak{gl}(V), \omega \in \mathcal{A}^p(M), \eta \in \mathcal{A}^q(M)$. Then

$$\begin{split} [\omega \otimes X, \eta \otimes Y] &= \omega \wedge \eta \otimes XY - \omega \wedge \eta \otimes YX = (\omega \otimes X) \wedge (\eta \otimes Y) - (-1)^{pq} \eta \wedge \omega \otimes YX = \\ (\omega \otimes X) \wedge (\eta \otimes Y) + (-1)^{pq+1} (\eta \otimes Y) \wedge (\omega \otimes X). \end{split}$$

In other words, if $\omega \in \mathcal{A}^p(M, \mathfrak{gl}(V))$ and $\eta \in \mathcal{A}^q(M, \mathfrak{gl}(V))$, we find that

$$[\omega,\eta] = \omega \wedge \eta - (-1)^{pq} \eta \wedge \omega, \tag{1}$$

where \wedge denotes the combination of the wedge product and the matrix multiplication. In general, one can prove easily that $\mathcal{A}^p(M, \mathfrak{g})$ has the structure of a differential graded Lie algebra: Let $\omega \in \mathcal{A}^p(M; \mathfrak{g}), \eta \in \mathcal{A}^q(M; \mathfrak{g})$, and $\zeta \in \mathcal{A}^r(M; \mathfrak{g})$. Then

a) $d[\omega, \eta] = [d\omega, \eta] + (-1)^p[\omega, d\eta],$

b)
$$[\omega, \eta] = (-1)^{pq+1} [\eta, \omega],$$

c) $(-1)^{pr}[[\omega,\eta],\zeta] + (-1)^{qp}[[\eta,\zeta],\omega] + (-1)^{rq}[[\zeta,\omega],\eta] = 0.$

A Lie algebra homomorphism $\varphi : \mathfrak{g} \to \mathfrak{h}$ induces, in an obvious manner, a map $\varphi_* : \mathcal{A}^*(M, \mathfrak{g}) \to \mathcal{A}^*(M, \mathfrak{h})$. Smooth maps $g : M \to G$ act on \mathfrak{g} -valued differential forms by the adjoint representation.

The mother of all Lie algebra valued forms is a canonical 1-form that exists on every Lie group.

Definition. Let G be a Lie group and $\pi : TG \to G$ be the tangent bundle. By R_g , L_g , we denote the left and right translations by $g \in G$. The maps $TG \to G \times \mathfrak{g}$, $v \mapsto (\pi(v), L_{\pi(v)^{-1}*}v)$ and $G \times \mathfrak{g} \to TG$, $(g, x) \mapsto L_{g*}x$ are two mutually inverse bundle isomorphisms. The 1-form $\omega_G \in \mathcal{A}^1(G; \mathfrak{g}), v \mapsto L_{\pi(v)^{-1}*}v$ is called Maurer-Cartan-form.

Exercise 4. Let G be a linear group, and $\phi : G \to \operatorname{GL}(V)$ be an injective group homomorphism. We denote the function $\phi : G \to \operatorname{End}(V)$ by the letter g. Prove that $\omega_G = g^{-1} dg$.

Exercise 5. Let G and H be Lie groups and $\phi : G \to H$ be a homomorphism with derivative $\varphi : \mathfrak{g} \to \mathfrak{h}$. Let $\mu : G \times G \to G$ be the multiplication. Assume that H and G are linear. Prove:

- a) For all $g \in G$: $L_q^* \omega_G = \omega_G$; $R_q^* \omega_G = \operatorname{Ad}(g^{-1}) \omega_G$.
- b) $\phi^* \omega_H = \varphi_* \omega_G$.
- c) $\mu^* \omega_G = p_2^* \omega_G + \operatorname{Ad}(p_2^{-1}) p_1^* \omega_G$, where $p_i : G \times G \to G$ are the two projections.
- d) (structural equation) $d\omega_G + \frac{1}{2}[\omega_G, \omega_G] = 0.$
- e) $d(\operatorname{Ad}(g^{-1})\eta) = \operatorname{Ad}(g^{-1})d\eta [\omega_G, \operatorname{Ad}(g^{-1}\eta)].$

What do these things say for the homomorphism $\exp : \mathbb{C} \to \mathbb{C}^{\times}$?