Exercises for Index theory I

Sheet 11

J. Ebert / W. Gollinger

Deadline: 23.1.2014
The purpose of this exercise sheet is that you familiarize yourself with some basic notions of Lie theory; these facts will be needed for the theory of characteristic classes. It is useful to consider the literature; I recommend the first pages of: Duistermaat, Kolk: "Lie groups", available on googlebooks and Sharpe: "Differential Geometry". First some definitions. A Lie algebra is a vector space \mathfrak{g}, together with a bilinear map $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g},(X, Y) \mapsto[X, Y]$, the bracket, such that

$$
[X, Y]=-[Y, X] \text { and }[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

hold for all $X, Y, Z \in \mathfrak{g}$. The second identity is called Jacobi identity, and the first one is equivalent to $[X, X]=0$, at least in characteristic $\neq 2$. The prime example of a Lie algebra is $\mathfrak{g l}(V)$; this is the space of all endomorphisms of the vector space V, with the commutator as bracket. It is useful to view $\mathrm{GL}(V) \subset \mathfrak{g l}(V)$ as an open subset, thus there is a canonical isomorphism $T_{1} \mathrm{GL}(V) \cong \mathfrak{g l}(V)$. The following notations are fixed on the rest of this sheet.

Assumption. Let G be a Lie group with multiplication map $\mu: G \times G \rightarrow G$ and unit $1 \in G$. We let $\mathfrak{g}=T_{1} G$. If H is another Lie group, we let $\mathfrak{h}:=T_{1} H$. Let $\phi: G \rightarrow H$ be a smooth group homomorphism and $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ be the derivative of ϕ at the identity.

For each $g \in G$, we let $C_{g}: G \rightarrow G, h \mapsto g h g^{-1}$ be the conjugation map, which is smooth and satisfies $C_{g}(1)=1$ and $C_{g} \circ C_{h}=C_{g h}$. The adjoint representation of G is the map $\operatorname{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g}) ; \operatorname{Ad}(g)=D_{1} C_{g}$. It is clear that Ad is a smooth group homomorphism $G \rightarrow \mathrm{GL}(\mathfrak{g})$. We define ad $: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ as ad $=D_{1} \operatorname{Ad}$ and for $X, Y \in \mathfrak{g}:$ $[X, Y]:=\operatorname{ad}(X)(Y)$ or

$$
[X, Y]=\operatorname{ad}(X) Y=\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Ad}\left(x_{t}\right) Y\right)=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d t}\right|_{s=0}\left(x_{t} y_{s} x_{t}^{-1}\right) .
$$

The group G acts on \mathfrak{g} by the adjoint representation and on \mathfrak{h} by the composition $G \xrightarrow{\phi}$ $H \xrightarrow{\operatorname{Ad}_{H}} \mathrm{GL}(\mathfrak{h})$.

Exercise 1. Prove that the derivative $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is G-equivariant, in other words: $\varphi(\operatorname{Ad}(g) X)=\operatorname{Ad}(\phi(g)) \varphi(X)$. Hint: take a curve $x_{t} \in G$ be a curve with $x_{0}=1$ and $\left.\frac{d}{d t}\right|_{t=0} x_{t}=X$. Derive from this by differentiating that $\varphi([X, Y])=[\varphi(X), \varphi(Y)]$, in other words, the derivative of a homomorphism preserves the bracket.

Exercise 2. Let $G=\mathrm{GL}(V)$. Prove that $\operatorname{Ad}(g) X=g X g^{-1}$ and $\operatorname{ad}(X) Y=X Y-Y X$.
This proves easily that $\mathfrak{g l}(V)$, with the bracket defined above, is a Lie algebra. The proof that this is a Lie algebra for general G is not easy at all, and I refer to Duistermaat-Kolk for this fact. However, we are only interested in Lie groups which are linear in the sense that there is a vector space V and an injective homomorphism $G \rightarrow \mathrm{GL}(V)$. All Lie groups that are relevant for us are linear.

Exercise 3. Prove that \mathfrak{g}, with the commutator, is a Lie algebra, under the simplifying assumption that G is a linear Lie group. Hint: use the linearity to show that $[X, X]=0$. Use the first exercise for $\phi: G \rightarrow \mathrm{GL}(V)$.

If M is a manifold and \mathfrak{g} a Lie algebra, we can talk about the space $\mathcal{A}^{p}(M ; \mathfrak{g})$ of p-forms with values in \mathfrak{g}. One can combine the wedge product and the Lie bracket:

$$
[;]: \mathcal{A}^{p}(M ; \mathfrak{g}) \otimes \mathcal{A}^{q}(M ; \mathfrak{g}) \widehat{\rightarrow} \mathcal{A}^{p+q}(M ; \mathfrak{g} \otimes \mathfrak{g}) \xrightarrow{[,]} \mathcal{A}^{p+q}(M, \mathfrak{g}) ;
$$

more concretely, if ω, η are real valued forms and $X, Y \in \mathfrak{g}$, then $[\omega \otimes X, \eta \otimes Y]:=$ $\omega \wedge \eta \otimes[X, Y]$.
Let $\mathfrak{g}=\mathfrak{g l}(V)$ and $X, Y \in \mathfrak{g l}(V), \omega \in \mathcal{A}^{p}(M), \eta \in \mathcal{A}^{q}(M)$. Then

$$
\begin{array}{r}
{[\omega \otimes X, \eta \otimes Y]=\omega \wedge \eta \otimes X Y-\omega \wedge \eta \otimes Y X=(\omega \otimes X) \wedge(\eta \otimes Y)-(-1)^{p q} \eta \wedge \omega \otimes Y X=} \\
(\omega \otimes X) \wedge(\eta \otimes Y)+(-1)^{p q+1}(\eta \otimes Y) \wedge(\omega \otimes X) .
\end{array}
$$

In other words, if $\omega \in \mathcal{A}^{p}(M, \mathfrak{g l}(V))$ and $\eta \in \mathcal{A}^{q}(M, \mathfrak{g l}(V))$, we find that

$$
\begin{equation*}
[\omega, \eta]=\omega \wedge \eta-(-1)^{p q} \eta \wedge \omega \tag{1}
\end{equation*}
$$

where \wedge denotes the combination of the wedge product and the matrix multiplication. In general, one can prove easily that $\mathcal{A}^{p}(M, \mathfrak{g})$ has the structure of a differential graded Lie algebra: Let $\omega \in \mathcal{A}^{p}(M ; \mathfrak{g}), \eta \in \mathcal{A}^{q}(M ; \mathfrak{g})$, and $\zeta \in \mathcal{A}^{r}(M ; \mathfrak{g})$. Then
a) $d[\omega, \eta]=[d \omega, \eta]+(-1)^{p}[\omega, d \eta]$,
b) $[\omega, \eta]=(-1)^{p q+1}[\eta, \omega]$,
c) $(-1)^{p r}[[\omega, \eta], \zeta]+(-1)^{q p}[[\eta, \zeta], \omega]+(-1)^{r q}[[\zeta, \omega], \eta]=0$.

A Lie algebra homomorphism $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ induces, in an obvious manner, a map φ_{*} : $\mathcal{A}^{*}(M, \mathfrak{g}) \rightarrow \mathcal{A}^{*}(M, \mathfrak{h})$. Smooth maps $g: M \rightarrow G$ act on \mathfrak{g}-valued differential forms by the adjoint representation.

The mother of all Lie algebra valued forms is a canonical 1-form that exists on every Lie group.

Definition. Let G be a Lie group and $\pi: T G \rightarrow G$ be the tangent bundle. By R_{g}, L_{g}, we denote the left and right translations by $g \in G$. The maps $T G \rightarrow G \times \mathfrak{g}$, $v \mapsto\left(\pi(v), L_{\pi(v)^{-1} *} v\right)$ and $G \times \mathfrak{g} \rightarrow T G,(g, x) \mapsto L_{g * x} x$ are two mutually inverse bundle isomorphisms. The 1-form $\omega_{G} \in \mathcal{A}^{1}(G ; \mathfrak{g}), v \mapsto L_{\pi(v)^{-1} *} v$ is called Maurer-Cartan-form.

Exercise 4. Let G be a linear group, and $\phi: G \rightarrow \mathrm{GL}(V)$ be an injective group homomorphism. We denote the function $\phi: G \rightarrow \operatorname{End}(V)$ by the letter g. Prove that $\omega_{G}=g^{-1} d g$.

Exercise 5. Let G and H be Lie groups and $\phi: G \rightarrow H$ be a homomorphism with derivative $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$. Let $\mu: G \times G \rightarrow G$ be the multiplication. Assume that H and G are linear. Prove:
a) For all $g \in G: L_{g}^{*} \omega_{G}=\omega_{G} ; R_{g}^{*} \omega_{G}=\operatorname{Ad}\left(g^{-1}\right) \omega_{G}$.
b) $\phi^{*} \omega_{H}=\varphi_{*} \omega_{G}$.
c) $\mu^{*} \omega_{G}=p_{2}^{*} \omega_{G}+\operatorname{Ad}\left(p_{2}^{-1}\right) p_{1}^{*} \omega_{G}$, where $p_{i}: G \times G \rightarrow G$ are the two projections.
d) (structural equation) $d \omega_{G}+\frac{1}{2}\left[\omega_{G}, \omega_{G}\right]=0$.
e) $d\left(\operatorname{Ad}\left(g^{-1}\right) \eta\right)=\operatorname{Ad}\left(g^{-1}\right) d \eta-\left[\omega_{G}, \operatorname{Ad}\left(g^{-1} \eta\right]\right.$.

What do these things say for the homomorphism exp : $\mathbb{C} \rightarrow \mathbb{C}^{\times}$?

