Exercises for Index theory I

Sheet 1

J. Ebert / W. Gollinger

Deadline: 25.10.2013
The purpose of this exercise sheet is to prove the Atiyah-Singer index theorem for the manifold S^{1} by bare hands: each elliptic differential operator on S^{1} of order 1 has index zero.
Via the usual map $\mathbb{R} / \mathbb{Z} \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$, we can identify (vector-valued) functions on S^{1} with 1-periodic functions $C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)_{1}$. Now let $A: \mathbb{R} \rightarrow \operatorname{Mat}_{n, n}(\mathbb{C})$ be a smooth, 1-periodic, matrix valued function. We consider the linear differential operator

$$
\begin{equation*}
D: C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)_{1} \rightarrow C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)_{1} ; f \mapsto f^{\prime}+A f \tag{1}
\end{equation*}
$$

This is in fact an elliptic differential operator on S^{1}. Recall from Analysis II the solution theory of linear ODEs of order 1, forgetting for the moment that A is assumed to be periodic. There exists a (unique) function $W: \mathbb{R} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ such that $W(0)=1$ and $W^{\prime}=-A W$. If $v \in \mathbb{C}^{n}$, then $f(t)=W(t) v$ is the unique solution to the ODE $D f=0$ with initial value $f(0)=v$, which is why we call W the fundamental solution. We also need to talk about inhomogeneous solutions, namely solution f of the ODE

$$
\begin{equation*}
D f=u \tag{2}
\end{equation*}
$$

Let us try to solve the equation 2, first with the intial value $f(0)=0$. To find the solution, we make the ansatz $f(t)=W(t) c(t)$ for a yet to be determined function $c: \mathbb{R} \rightarrow \mathbb{C}^{n}$ (with $c(0)=0)$. Applying the equation 2, we find that

$$
c^{\prime}=W^{-1} u \text { or } c(t)=\int_{0}^{t} W(s)^{-1} u(s) d s
$$

The general solution to the initial value problem $D f=u, f(0)=v$ is then given by

$$
\begin{equation*}
f(t)=W(t) v+W(t) \int_{0}^{t} W(s)^{-1} u(s) d s \tag{3}
\end{equation*}
$$

We have proven so far that $D: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is surjective and has n-dimensional kernel. But we want to talk about periodic solutions.

Exercise 1. Assume that A is 1-periodic and let $W(t)$ be the fundamental solution. Prove that

$$
W(t+1)=W(t) W(1)
$$

and that the linear map $v \mapsto W(t) v, \mathbb{C}^{n} \rightarrow C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)$ induces an isomorphism from the eigenspace $\operatorname{ker}(W(1)-1)$ to the kernel of the operator 1 .

Now turn to the determination of the cokernel of the operator 1 .
Exercise 2. Let u be a periodic function. Prove that there exists a periodic solution to $D f=u$ if and only if the vector

$$
\int_{0}^{1} W(s)^{-1} u(s) d s \in \operatorname{Im}(W(1)-1)
$$

Derive that $D: C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)_{1} \rightarrow C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)_{1}$ has index zero. Hint: use the solution formula (3)

We go one step further. The vector space $C^{\infty}\left(\mathbb{R}, \mathbb{C}^{n}\right)_{1}$ has an inner product $\langle f ; g\rangle:=$ $\int_{0}^{1}(f(t) ; g(t)) d t$, using the integral and the inner product on \mathbb{C}^{n}. Now we consider the adjoint operator to D :

$$
D^{*} f(t):=-f^{\prime}(t)+A(t)^{*} f(t)
$$

Let $V: \mathbb{R} \rightarrow \operatorname{Mat}_{n, n}(\mathbb{C})$ be the fundamental solution for D^{*}, i.e. $V(0)=1$ and $V^{\prime}=A^{*} V$.

Exercise 3. Prove:
a) D^{*} is indeed the adjoint of D in the sense that $\left\langle D^{*} f ; g\right\rangle=\langle f ; D g\rangle$ holds for all functions f, g (partial integration).
b) $V^{*} W=1$ (differentiate!).
c) $\operatorname{Im}(W(1)-1)=(\operatorname{ker}(V(1)-1))^{\perp}$.
d) Conclude that $u \in \operatorname{Im}(D)$ if and only for all $w \in \operatorname{ker}(V(1)-1)$, the equation $\int_{0}^{1}(V(s) w, u(s)) d s=0$ holds.
e) Prove that there is an orthogonal sum decomposition $C^{\infty}\left(\mathbb{R} ; \mathbb{C}^{n}\right)_{1}=\operatorname{Im}(D) \oplus \operatorname{ker}\left(D^{*}\right)$.

In two cases, there are explicit formulae for the solution operator. If $n=1$, then $W(t)=$ $\exp \left(-\int_{0}^{t} A(s) d s\right)$. The other easy case is when $A(s) \equiv A$ is constant, in which case the fundamental solution is $\exp (A t)$.

Exercise 4. Assume that $n=1$. Prove that $\operatorname{dim} \operatorname{ker}(D)=1$ if and only if $\int_{0}^{1} a(s) d s \in 2 \pi i$ (in the other case, the kernel is trivial). Assume that $n \geq 1$ and A is constant. Show that $\operatorname{dim}(\operatorname{ker}(D))=\sum_{k \in \mathbb{Z}} \operatorname{Eig}(A, 2 \pi k)$.

