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The purpose of this exercise sheet is to prove the Atiyah-Singer index theorem for the

manifold S1 by bare hands: each elliptic differential operator on S1 of order 1 has index

zero.

Via the usual map R/Z → S1, t 7→ e2πit, we can identify (vector-valued) functions on

S1 with 1-periodic functions C∞(R;Cn)1. Now let A : R → Matn,n(C) be a smooth,

1-periodic, matrix valued function. We consider the linear differential operator

D : C∞(R;Cn)1 → C∞(R;Cn)1; f 7→ f ′ +Af. (1)

This is in fact an elliptic differential operator on S1. Recall from Analysis II the solution

theory of linear ODEs of order 1, forgetting for the moment that A is assumed to be

periodic. There exists a (unique) function W : R → GLn(C) such that W (0) = 1 and

W ′ = −AW . If v ∈ Cn, then f(t) = W (t)v is the unique solution to the ODE Df = 0

with initial value f(0) = v, which is why we call W the fundamental solution. We also

need to talk about inhomogeneous solutions, namely solution f of the ODE

Df = u. (2)

Let us try to solve the equation 2, first with the intial value f(0) = 0. To find the solution,

we make the ansatz f(t) = W (t)c(t) for a yet to be determined function c : R→ Cn (with

c(0) = 0). Applying the equation 2, we find that

c′ = W−1u or c(t) =

∫ t

0
W (s)−1u(s)ds.

The general solution to the initial value problem Df = u, f(0) = v is then given by

f(t) = W (t)v +W (t)

∫ t

0
W (s)−1u(s)ds. (3)

We have proven so far that D : C∞(Rn) → C∞(Rn) is surjective and has n-dimensional

kernel. But we want to talk about periodic solutions.

Exercise 1. Assume that A is 1-periodic and let W (t) be the fundamental solution. Prove

that

W (t+ 1) = W (t)W (1)



and that the linear map v 7→ W (t)v, Cn → C∞(R;Cn) induces an isomorphism from the

eigenspace ker(W (1)− 1) to the kernel of the operator 1.

Now turn to the determination of the cokernel of the operator 1.

Exercise 2. Let u be a periodic function. Prove that there exists a periodic solution to

Df = u if and only if the vector∫ 1

0
W (s)−1u(s)ds ∈ Im(W (1)− 1).

Derive that D : C∞(R;Cn)1 → C∞(R;Cn)1 has index zero. Hint: use the solution formula

3.

We go one step further. The vector space C∞(R,Cn)1 has an inner product 〈f ; g〉 :=∫ 1
0 (f(t); g(t)) dt, using the integral and the inner product on Cn. Now we consider the

adjoint operator to D:

D∗f(t) := −f ′(t) +A(t)∗f(t).

Let V : R→ Matn,n(C) be the fundamental solution for D∗, i.e. V (0) = 1 and V ′ = A∗V .

Exercise 3. Prove:

a) D∗ is indeed the adjoint of D in the sense that 〈D∗f ; g〉 = 〈f ;Dg〉 holds for all

functions f, g (partial integration).

b) V ∗W = 1 (differentiate!).

c) Im(W (1)− 1) = (ker(V (1)− 1))⊥.

d) Conclude that u ∈ Im(D) if and only for all w ∈ ker(V (1) − 1), the equation∫ 1
0 (V (s)w, u(s)) ds = 0 holds.

e) Prove that there is an orthogonal sum decomposition C∞(R;Cn)1 = Im(D)⊕ker(D∗).

In two cases, there are explicit formulae for the solution operator. If n = 1, then W (t) =

exp(−
∫ t
0 A(s)ds). The other easy case is when A(s) ≡ A is constant, in which case the

fundamental solution is exp(At).

Exercise 4. Assume that n = 1. Prove that dim ker(D) = 1 if and only if
∫ 1
0 a(s)ds ∈ 2πi

(in the other case, the kernel is trivial). Assume that n ≥ 1 and A is constant. Show that

dim(ker(D)) =
∑

k∈Z Eig(A, 2πk).


