Exercises for Index theory I

Sheet 1

J. Ebert / W. Gollinger

Deadline: 25.10.2013

The purpose of this exercise sheet is to prove the Atiyah-Singer index theorem for the manifold S^1 by bare hands: each elliptic differential operator on S^1 of order 1 has index zero.

Via the usual map $\mathbb{R}/\mathbb{Z} \to S^1$, $t \mapsto e^{2\pi i t}$, we can identify (vector-valued) functions on S^1 with 1-periodic functions $C^{\infty}(\mathbb{R};\mathbb{C}^n)_1$. Now let $A:\mathbb{R} \to \operatorname{Mat}_{n,n}(\mathbb{C})$ be a smooth, 1-periodic, matrix valued function. We consider the linear differential operator

$$D: C^{\infty}(\mathbb{R}; \mathbb{C}^n)_1 \to C^{\infty}(\mathbb{R}; \mathbb{C}^n)_1; \ f \mapsto f' + Af.$$
(1)

This is in fact an elliptic differential operator on S^1 . Recall from Analysis II the solution theory of linear ODEs of order 1, forgetting for the moment that A is assumed to be periodic. There exists a (unique) function $W : \mathbb{R} \to \operatorname{GL}_n(\mathbb{C})$ such that W(0) = 1 and W' = -AW. If $v \in \mathbb{C}^n$, then f(t) = W(t)v is the unique solution to the ODE Df = 0with initial value f(0) = v, which is why we call W the fundamental solution. We also need to talk about *inhomogeneous* solutions, namely solution f of the ODE

$$Df = u. (2)$$

Let us try to solve the equation 2, first with the initial value f(0) = 0. To find the solution, we make the ansatz f(t) = W(t)c(t) for a yet to be determined function $c : \mathbb{R} \to \mathbb{C}^n$ (with c(0) = 0). Applying the equation 2, we find that

$$c' = W^{-1}u$$
 or $c(t) = \int_0^t W(s)^{-1}u(s)ds$.

The general solution to the initial value problem Df = u, f(0) = v is then given by

$$f(t) = W(t)v + W(t) \int_0^t W(s)^{-1} u(s) ds.$$
(3)

We have proven so far that $D: C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ is surjective and has *n*-dimensional kernel. But we want to talk about *periodic solutions*.

Exercise 1. Assume that A is 1-periodic and let W(t) be the fundamental solution. Prove that

$$W(t+1) = W(t)W(1)$$

and that the linear map $v \mapsto W(t)v$, $\mathbb{C}^n \to C^{\infty}(\mathbb{R};\mathbb{C}^n)$ induces an isomorphism from the eigenspace ker(W(1)-1) to the kernel of the operator 1.

Now turn to the determination of the cokernel of the operator 1.

Exercise 2. Let u be a periodic function. Prove that there exists a periodic solution to Df = u if and only if the vector

$$\int_0^1 W(s)^{-1} u(s) ds \in \text{Im}(W(1) - 1)$$

Derive that $D: C^{\infty}(\mathbb{R}; \mathbb{C}^n)_1 \to C^{\infty}(\mathbb{R}; \mathbb{C}^n)_1$ has index zero. Hint: use the solution formula 3.

We go one step further. The vector space $C^{\infty}(\mathbb{R}, \mathbb{C}^n)_1$ has an inner product $\langle f; g \rangle := \int_0^1 (f(t); g(t)) dt$, using the integral and the inner product on \mathbb{C}^n . Now we consider the *adjoint operator* to D:

$$D^*f(t) := -f'(t) + A(t)^*f(t).$$

Let $V : \mathbb{R} \to \operatorname{Mat}_{n,n}(\mathbb{C})$ be the fundamental solution for D^* , i.e. V(0) = 1 and $V' = A^*V$.

Exercise 3. Prove:

- a) D^* is indeed the adjoint of D in the sense that $\langle D^*f;g\rangle = \langle f;Dg\rangle$ holds for all functions f, g (partial integration).
- b) $V^*W = 1$ (differentiate!).
- c) $\operatorname{Im}(W(1) 1) = (\ker(V(1) 1))^{\perp}$.
- d) Conclude that $u \in \text{Im}(D)$ if and only for all $w \in \text{ker}(V(1) 1)$, the equation $\int_0^1 (V(s)w, u(s)) \, ds = 0$ holds.
- e) Prove that there is an orthogonal sum decomposition $C^{\infty}(\mathbb{R};\mathbb{C}^n)_1 = \operatorname{Im}(D) \oplus \ker(D^*)$.

In two cases, there are explicit formulae for the solution operator. If n = 1, then $W(t) = \exp(-\int_0^t A(s)ds)$. The other easy case is when $A(s) \equiv A$ is constant, in which case the fundamental solution is $\exp(At)$.

Exercise 4. Assume that n = 1. Prove that dim ker(D) = 1 if and only if $\int_0^1 a(s)ds \in 2\pi i$ (in the other case, the kernel is trivial). Assume that $n \ge 1$ and A is constant. Show that dim $(\text{ker}(D)) = \sum_{k \in \mathbb{Z}} \text{Eig}(A, 2\pi k)$.