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In this Oberseminar we study the construction and geometric properties of moduli spaces of L-
parameters, as described by Dat, Helm, Kurinczuk and Moss in [2]. There are various possible
definitions of L-parameters, for the Weil group WF of a p-adic local field F , with values in the
L-group of a reductive group G over F . Over Q̄` (for a prime ` 6= p) the easiest possibility is to
use `-adically continuous L-homomorphisms

WF −→ LG(Q̄`).

However, with this definition it is less clear how to define a moduli space of such objects. Instead
we will use a discretization of the Weil group in order to define a moduli space of L-parameters
over Z[1/p]. This moduli space depends on choices used in the discretization, but we will see that
the `-adic completions turn out to be independent of these choices and that there exists a universal
family of `-adically continuous WF -representations over these completions. We will study the local
and global geometry of these moduli spaces, and the GIT quotient under the action of the dual
group, as well as the relation with questions in the context of the local Langlands correspondence.

1) Various definitions of L-parameters
The aim of this talk is to recall the four possible definitions of L-parameters given in [2,
§§1.1,1.2] (see page 2 for (1),(2),(3) and page 4 for (4)). First treat the story for GLn: recall
the definition of the Weil group of a p-adic local field K (see e.g. [6, (1.1.8)]) and define
the Weil-Deligne group and Weil-Deligne representations, [6, §3.1]. State Grothendieck’s
`-adic monodromy theorem in oder to compare continuous `-adic Galois-representations
respectively representations of the Weil group with representations of the Weil-Deligne
group.
Next recall some notions and definition concerning reductive groups. In particular the
notion of a pinning, the dual group and the definition of the L-group of a reductive group
over a (local) field K, see e.g. [1, 11.1]. Define L-homomorphisms and L-parameters (we can
for example use the definition as in [3, §4.] but disregard the condition involving relevant
parabolic subgroups (i.e. we can focus on quasi-split groups); then explain [3, Remark
4.0.2]). Finally explain the equivalence of definitions (1)-(4) of [2].

2) The general moduli problem, and tame parameters
Translate L-parameters with values in a Z[1/p]-algebra R into R-valued cocycles as in [2,

p.5]. State and prove the representability of the functor Z1(W 0
F , Ĝ(−)) in general (here we

only use the description of L-parameters as in (4) of [2, p.4]. Continuous representations
for the `-adic topology and `-adic completion will be treated in talk 3 and 7). Then move
to tame parameters: cover [2, §§2.1,2.2].

3) Geometry of the space of tame parameters

Finish [2, §2]. In particular show that the representing affine scheme of Z1(W 0
F /PF , Ĝ(−))

is generically smooth (Prop. 2.7) and `-adically separated (Cor. 2.10). Then construct the

universal `-adic WF /PF -representation over the `-adic completion of Z1(W 0
F /PF , Ĝ(−)),

see [2, Theorem 2.12].

4) Moduli of cocycles, I
Describe generalities about the moduli spaces of cocycles [2, Appendix A, A.1,A.2,A.3].
Before treating A.3, recall some background material on geometric invariant theory.

5) Moduli of cocycles, II
Continue the analysis of moduli schemes of cocycles [2, Appendix A, A.4,A.5,A.6]. Use
this abstract machinery to state and prove [2, Theorem 3.1].
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6) Reduction to the tame parameter case
Cover [2, §3], in particular, prove Theorem 3.4 and Theorem 3.12 of loc. cit.

7) Geometric properties of the moduli space

Prove that the moduli scheme Z1(W 0
F /P

e
F , Ĝ) is flat and a local complete intersection; con-

struct the universal `-adic representation over its `-adic completion [2, Theorem 4.1], and
prove that the `-adic completion is independent of choices [2, Cor. 4.2]. State Conjectures
4.3 and 4.4 of loc. cit. about connectedness of the moduli spaces. Then cover sections 4.2
and 4.3 of [2]. Prove Theorem 4.13 of loc. cit.

8) Connected components of the moduli space
Finish section 4.4 of [2] and cover sections 4.5 and 4.6. In particular, prove Theorem 4.5
and Theorem 4.8.

9) Deformation theory and unobstructed points
This talk should cover as much as possible of [2, §§5.1,5.2]. In particular sketch the proof

of Theorem 5.5. In order to simplify the exposition we can restrict to the case that Ĝ has
no exceptional factor.

10) The GIT quotient by the action of Ĝ

Introduce the notion of banal primes [2, §5.3]. Then describe the quotient Z1(WF /I
e
F , Ĝ)//Ĝ,

see [2, Thm. 6.7 and Thm. 6.8].

11) Comparison with Haines’ variety of infinitesimal characters
Survey Haines description of a a variety structure on the set of infinitesimal characters
[3, §§5.1,5.3]. Then identify the GIT quotient of the complex fiber of Z1(WF /I

e
F , Ĝ) with

Haines’ variety, see [2, Theorem 6.10].

12) Comparison with the Bernstein center
Explain the relation of Haines’ variety with the Bernstein center [3, §5.5]. If time permits
describe the integral version of this comparison in the case of GLn. This is the work of
Helm and Moss [5], proving [4, Conjecture 7.6].
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